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Abstract

In this paper we study the order, stability, and convergence prop-
erties of implicit Runge-Kutta (IRK) methods applied to differen-
tial/algebraic systems with index greater than one. These methods
do not in general attain the same order of accuracy for higher index
differential/algebraic systems as they do for index one systems or for
purely differential systems. We derive necessary and sufficient condi-
tions on the method coefficients to ensure that the local and global
errors of the method attain a given order of accuracy for high index
linear constant coefficient systems. We study IRK methods applied to
nonlinear semi-explicit index two systems and derive a sufficient set of
conditions which ensure that a method is accurate to a given order for
these sytems. Finally, we present some numerical experiments which
illustrate these results.
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1 Introduction

In this paper we extend the results for order, stability, and convergence of
implicit Runge-Kutta (IRK) methods derived for index one systems by Pet-
gold [17] to higher index differential/algebraic systems. It is well known that
these methods often do not attain the same order of accuracy for differen-
tial/algebraic systems as they do for purely differential systems. Petzold
has studied their behavior on uniformly index one systems of the form,

F(y,y'.t)=0 (1.1)

when consistent initial values y(#o) are given. We examine two classes of
DAEs not considered in [17], to understand how the order of accuracy of an
IRK method depends on the index of the DAE system as well as the method
coefficients. First we study solvable linear constant coefficient systems

Ay’ + By = g(1), (12)

of arbitrary index v, where A and B are square constant matrices and g(t) is
a smooth function. Then we develop a convergence theory for IRK methods
applied to nonlinear semi-explicit index two systems,

f(zn 3'1 Y, t) =0
’(zlylt) =0, (1.3)

where (3f/9z')~! exists and is bounded in some neighborhood of the solu-

tion and 3g/dy has constant rank.
We formally apply an M-stage IRK method to a DAE (1.1) to obtain

the system of difference equations

M
Flyn-1+hY oY}, Y tn-14+e;h) =0 i=12,...,.M
=1

M
Un = YUn-1+ h_E b;Y/! (1.4)

=1

where h = t, — t,_;. We will assume throughout this paper that the coeffi-
cient matrix 4 = (a;;) of the Runge-Kutta method is nonsingular. Note that
this method reduces to a standard IRK method when applied to a system
of explicit ordinary differential equations (ODEs).



In section 2 we study linear constant coefficient systems of arbitrary
index ». We derive necessary and sufficient conditions on the method coef-
ficients to ensure that the local error of the method attains a given order of
accuracy for these systems. We also investigate the error propagation prop-
erties of IRK methods applied to these systems, and derive an expression
for the global error. : .

In section 3 we develop a convergence theory for IRK methods applied
to nonlinear semi-explicit index two systems of the form (1.3). We derive
a sufficient set of conditions which ensure that a method is accurate to a
given order for these systems.

In the last section we describe some numerical experiments which illus-
trate the order reduction effects predicted by the theory, and also raise some
interesting questions for future research.



2 Linear Constant Coefficient Systems

In this section we derive conditions that are necessary and sufficient to
ensure that the local error of an implicit Runge-Kutta method attains a
given order when applied to linear constant coefficient systems of arbitrary
index v. Then we study error propagation for constant coefficient higher
index systems, and derive an expression for the global error.

Consider the linear constant coefficient DAE (1.2)

Ay'+ By =g(t) (2.1)

of index v. We assume this system is solvable, so that there exist nonsingular
matrices P and @ which decouple the system [10],

PAQ=(£ 1‘\’,) PBQ:(g ‘I’) (2.2)

where I is an identity matrix and N is a block diagonal matrix, N =
diag(Ny, N3,..., N) composed of blocks of the form

N; = e . (2.3)

Applying the IRK method to (2.1), we have

M
AY;! + B(yp-1+ hz a.-,-YJ-') =g(tp-1+cih) s=12,...,M
i=1

M
Un = yn-1+h D b;Y.. (2.4)
=1

Premultiplying these difference equations by P and letting §, = Q1yp, ]7'.’ =
Q1Y/,5(t) = Pg(t), we obtain

M
(PAQ)Y! + (PBQ)(fin-1+ h Y 6ij¥)) = §tn-2+eih) ¢=1,2,...,.M
i=1

M -
fin = fn-1+h D b;¥,.

=1,



Note that the differential and algebraic parts of the system are decoupled
in this form. In addition, the algebraic subsystems are decoupled from one
another. Thus it is sufficient to study the behavior of the IRK method on
a canonical algebraic subsytem to understand its behavior on general linear
constant coefficient systems.

Consider then a canonical algebraic subsystem of index »

Ny' +y=g(t) (2.5)

‘where N is a v X v matrix of the form (2.3), g(t) = (g1(t), 92(2), - - -, 9. ()7,
and y(t) = (y1(t), y2(t);- .., ¥, (t))T- The solution to (2.5) is given by

nit) = all)
v2(t) = ga(t) — a1(t)

w(t) = ﬂu(t)+§(—1)""v§"—")(t)-

=1

Applying the IRK method to (2.5), we obtain

M
NY! + (y,,_.l + hZa.-,-Y,-') =g(tn-1+ k) s=1,2,....M

j=1

M
Yn=Yn-1+h E biY."- (2-6)

=1

Let Y/ = (Y, Y/5..., Y], )T where Y/, denotes the sth stage derivative
corresponding to the sth component of the solution vector, namely the ‘index
3’ variable y;(t). Because the coefficient matrix A4 = (ai;) of the IRK method
is nonsingular, the difference equations (2.6) can be solved uniquely for the
stage derivatives Y’ = (Y{,Y{,...,Y{)T. Because of the structure of N,
the solution to the sth equation in the original system (2.5) depends only
on the solutions to the first (§ — 1) equations. A similar dependency is
present in the difference equations (2.6), allowing us to solve first for the
stage derivatives Y{,,Y;,, ... ,YA'M corresponding to the index one variable
y1(t), second for the stage derivatives Y5, Y3, ..., Y, corresponding to
the index two variable y3(t), etc. This analysis has already been done in
[17] for the index one variable. Here we extend the analysis to more general

index v systems.



In general, for each component of the solution y;(t),5 = 1,2,...,», we
solve a subset of M equations from system (2.6) for the corresponding stage
derivatives:

(Vs Voo Vi) =
(1/B) A7 ((9j(tn-1 + €1h)s gi(tnor + c2h), . ., 9i{tns + erch))™
—eM¥n-15— (Fg-1 Yajo10-+ s Yig-1)7) (2.7)

where €p¢ = (1,1,...,1)T. Note that the stage derivatives depend only on
the numerical solution y,—1,; and on the stage derivatives of the (5 — 1)st
variable. Define

(ﬂs’(tn—l + clh) - ﬂi(tn—l))/h
(gl'(tn—l + czh) - yi(tn—l))/h

(0i(ta-s + erch) = i(ta-1)) /B
¢ = (cf,éh...,e%)T.
Utilizing the local error assumption,
Yn-1= !l(tu—l) (2.8)

and substituting for the (5 — 1)st stage derivatives in (2.7), we find the
following expressions for the local stage derivatives:

(Yl',ll Y2,,1t vy YA’I,I)T
(Yl',,, ) 77T Y,(,',)T = A'Ga— (1/h)A"%G1 + (1/h) A err ) (tn-1)

Ala,

(Y Vs Yh’l-ﬂ)r = A7'Gs+ (1/h)A" ene[g5(tn-1) — 91 (tn-1)]
—(1/h)A72G2 + (1/hN) 473Gy
— (1/h?) A %eng] (tn-1) (2.9)

and similar expressions for the remaining higher index variables. We define
the local error d, by

dp = y(tn-l) +h i bl'Yj" - ﬂ(tn) (2'10)

=1



whered, = (dp1,dn3,-.., d,.,,,)" and Y/ represent the local stage derivatives
given by (2.9). Expanding (2.10) in a Taylor series about ¢,_1, and equating
like powers of h, it is easy to see as in [17] that the local error d,,; in the
index one variable satisfies

dn1 = O(h*e1+1), (2.11)

when T4 f =1fori=1,2,..., ka1. kg1 is the algebraic order of the IRK
method applied to index one constant coefficient systems. For the index two
variable, the local error d, 3 is given by

dn,! = ”2(tn—1) - 92(tn) + ’lbrﬂ_le
+ 0T A eprgi (ta-1) — T 472Gy (2.12)

Note that ga(tn—1) — ga(ts) + hbTA~1G2 = O(h*111) if we assume the
IRK method has algebraic order k,; on index one problems. Then expand
the remaining terms in (2.12) in a Taylor series about ¢,_1 and equate like
powers of h to obtain the following set of order conditions for index two

constant coefficient systems,

BT A ep bT 4~ 3t
TA" % = 4, i=2,8,...,ks3.

We define the algebraic order of the IRK method applied to index two con-
stant coefficient canonical systems to be k, 3 if these conditions are satisfied.
The local error for a general index two constant coefficient system thus sat-
isfies dp g = O(h*e2) 4 O(h*s111),

This analysis can be extended in a straightforward manner to the general
index » case. For completeness we list here the additional algebraic order
conditions and the corresponding asymptotic behavior of the local error for
both the index three case and the most general case. For an index three

system,
d,,’s = O(hk-,a—l) + o(hk.,z) + O(hk‘-”'l)

where k, 3 is the largest integer such that
bTA 2ep = BTA3
TAlepy = BTA32/2
bTA73¢ = i(i—1), i=3,4,... ks



Finally, for a general constant coefficient index » system, the local error
satisfies

dny = O(K*=»—¥+2) 4 O(hkar-1-+3) 4 ... 4 O(hke1H) (2.13)
where k, ., is the largest integer such that

A ery = AV i (v—i)) i=12,..,v-1
TAv¢ = i(i—-1)...(6—v+1), s=v,v+1,... k.

Clearly, the higher the index the more difficult it is to find IRK methods
which are convergent in all the variables. Finding an IRK method having
the same rate of convergence in all of the variables similarly poses severe
restrictions on the coefficients.

Next we examine the propagation of errors for IRK methods applied to
linear constant coefficient systems. Consider solving (2.5) by the perturbed
Runge-Kutta method,

M
NZ{+ (zn-1+h Y 652} - 600) = g(ta—1 +¢;h) i=1,2,.... M

j=1
M
Sn =251+ h ) b;Z! — 6{M+Y), (2.14)
i=1
where the perturbations 5{) = (6,(,':’1,5,(,?,, . .,6,(.:,,)" satisfy ||6,(."|| < A for

$ = 1,2,...,M + 1. The perturbations could be due to roundoff error,
errors in solving the linear systems at each stage, or could be interpreted
as truncation errors at each stage (see section 3). Subtracting (2.14) from
(2.6), and defining e, = yn — 25, E} = Y/ — Z], we obtain an expression for
the difference between these two solutions

M
NE!+ (e,._1+hZa-,-E§-+5.‘.") =0, i=12...,M

i=1
M
en=en1+h ) bEl+ M), (2.15)
i=1

By solving the first equation in (2.16) for E} and substituting into the
second equation, we can obtain a relation describing the error propagation



of the method. For linear constant coefficient index one systems this was
done in Petsold [17] and resulted in

ena = (1 — BT A enr)en—1,1 — (BT A 2601 — 6S4HY), (2.16)
where 5, ; = (5,(‘13, 6,(: ,) ;. 6,(:;))". The recurrence (2.16) is unstable unless

|1 —bTA tep| < 1. Hence we will require as in [17] that the IRK method
satisfy the strict stability condsiion

|1-8TA tepr [< 1. (2.17)
The error propagation relation for the index two variable is given by
eng = (L—bTA Yer)en 1,2 — (BT A 2602 — 605 *Y)
+ (1/R)bT A~2(5p 1 + eren—1,1), (2.18)

while for the index three variable it is
ens = (1—bTA  err)en-1,8— (T4 26,5 — 655 HY)
+ (1/h)6T A~ *(6p,2 + erren—1,3)
~ (/AT A~3(601 + erren-11)- (2.19)
Finally, for the general index » case, the stability relation can be shown to
be

eny = (1— T4 enr)en—1, — (BT A716,, — 6M+1)) —
1
E ( ) br-ﬂ_.-l(sn.v—s + eMen-1 ll—l) (2-20)
=1

Note that the strict stability condition is no longer sufficient to insure stabil-
ity, in a strict mathematical sense, of the IRK method when applied to linear
constant coefficient systems of index greater than one. For small stepsizes,
roundoff errors can be significant for higher index variables.

These methods can be useful for the solution of higher index systems,
provided that we understand the implications of the error propagation re-
lations given above. We can see that the sensitivity. to roundoff errors is
confined to the higher index variables of the system, and does not propa-
gate back into the lower index variables. This observation holds also for the
nonlinear semi-explicit index two systems that we study in the next section.
Finally, using the error propagation relations above, we can extend the con-
clusions of Petzold [17] for global error in solving linear constant coefficient
index one systems to higher index systems as follows.



Definition 3.1 The constant coefficient order of an IRK method (1.4) is
equal to k,,, if the method converges with global error O(h***) for all solv-
able linear constant coefficient systems (1.2) of index < v.

Theorem 2.1 Suppose the IRK method (1.4) satisfies the strict stability
condition. Then the constant coefficient order k., of the global error of this

method is given by

kc,v = 1?ilsnv(kd' ka,i -v+ 2) (2'21)

where k is the order of the method for purely differential (nonstiff) systems.

Finally, we present some results on the order of accuracy of some IRK
methods from the stiff ODE literature applied to index one and index two
linear constant coefficient systems. We have chosen to investigate these
particular methods because our numerical experience [2] with IRK methods
applied to DAEs has led us to conclude that it is very desirable for a method
to be L-stable, or even better to be stifly accurate, and also because these
methods can be implemented efficiently. One reason why L-stable methods
appear promising is that they perform very well when applied to index one
and semi-explicit index two and index three systems, even when the initial
values contain small errors. Recall that a method is L-stable if it is A-
stable and if limp,(42)——oo [¥n+1/¥n| = 0, when applied to the test problem
y' = Ay. For IRK methods, this condition is equivalent to requiring that
[1 — 8TAYepq| = 0. Stiffly accurate methods [18]) are L-stable methods
which satisfy the additional requirement that car = 1, ap; = b for 5 =
1,2,...,M. Thus bTA"! = (0,0,...,0,1)7 for stifly accurate methods.
The L-stable methods we have chosen to investigate here are:

(1) 2-stage, ‘2nd order’ Singly Implicit method (SIRK) [4], with A = 1—v/2/2
(2) 5-stage, “4th order’ Diagonally Implicit method (DIRK) [1] [7]

(3) 3-stage, ‘3rd order’ Singly Implicit method (SIRK) |4], with 1/) the root
of the Laguerre polynomial of degree three

(4) 7-stage, ‘3rd order’ Extrapolation method based on fully implicit back-
ward Euler and polynomial extrapolation, written as a semi-implicit Runge-
Kutta method

Methods (1) and (2) are stiffly accurate. The results are given in Table 1,
where it can be seen that, as observed above, it is difficult to maintain the
same rate of convergence in all of the variables for linear constant coefficient

index two systems.

10



Table 2.1: Order of Consistency for LCC Canonical Systems

[| L-Stable Methods

ODE order k4

Indez 1 Order kq1

Indez 2 Order kq 2

1. Two-stage SIRK O(h*) Exact O(h%)
[[2. Five-stage DIRK O(h*) Exact O(h)
| 3. Three-stage SIRK Oo(r%) O(h%) O(h*)
| 4. Seven-stage Extrp. o(r®) Exact Oo(h®)

11




3 Semi-Explicit Nonlinear Index Two Systems

In this section we study nonlinear semi-expl.icif index two systems of the
form
f(zl Z', Y, t) = 0
g(z, v, t) = 0, (3.1)
where we will assume that (3f/3z')~! exists and is bounded in some neigh-
borhood of the solution, dg/dy has constant rank, and f and g have as

many continuous partial derivatives as desired in a neighborhood of the so-
lution. We give a set of order conditions which are sufficient to ensure that

a method is accurate to a given order for these systems.
To state our results, we first recall the definitions of internal order and

internal local truncation error given in [17].

Definition 3.1 The ith tnternal local truncation error 6,‘"’ at t, of an M-
stage smplicit Runge-Kutta method (1.4) 1s given by

M
5™ = z(ta-1)+hY 6z (tn1 +cjh) — Z(ta-1+cih), i=1,..., M,
J=1

M
5. = 2(ta1) + b biz'(ta-1 + cih) — 2(ta)- (3.2)
=1
Definition 3.3 The internal order ky of an M-stage smplicit Runge-Kutla
method (1.4) is given by
k[ = min(kl, ceey kM, kM+1)
where
5‘!") =Oo(h**), i=1,...,(M+1).

As in [17] [9), it is simple to find the internal order of an implicit Runge-
Kutta method in terms of its coefficients by expanding (3.2) in Taylor
series around t,_3, leading to the result that the internal order of an M-
stage implicit Runge-Kutta method is equal to ky iff the method coefficients

satisfy

M c*
Ea,-,-cf"l = f’ ti=1,..., M,
i=1
M
1
bt =
=1 ’ k



fork=1,...,k;.
Then we can state the following result.

Theorem 3.1 Given the nonlinear, sems-ezplicit indez two system (8.1) to
be solved numerically by the M-stage IRK method (1.4), suppose

1) The IRK method has internal order k;

2) The IRK method satisfies the strict stability condition

8) The initial conditions satisfy || (I — H)e3 ||= O(h*e), where I — H 45 a
projection operator defined below, ef = zo — z(to) and kg = min(ky, ks + 1)

Then the global errors in the numerical solution z, and y, are O(h*9)
and O(h*1), respectively.

Proof. We will first prove this theorem for the simpler index 2 system
z' +n (z’ Y, t) =0
ga(z,t) = 0O, (3.3)

where [(3g2/3z)(dg1/3y)] ! exists and is bounded in a neighborhood of the
solution, and then show that the results extend to the more general system
(3.1).

Consider the M-stage IRK applied to (3.3):

M M
X+ (-’Bn-l +h) 6 Xl yn1 +h Y Y/, t-') =0

j=1 Jj=1
M
g2 (zn-1+hza¢,-XJ'-,t,-) =0 1=12,.... M
j=1
M
Tp =Zp—1 +’lEb.'X: 5
=1
M
Yn=yn-1+hD_bY/, (3.4)
=1

where ¢; = t,_; + c;h. It is convenient to define intermediate stage values
for z and y at ¢;:

M
Xi=zp1+h z: a,-,-X;-
i=1

13



M
Yi=yn-1+h Z G.','YJ-'.
Jj=1

The true solution satisfies

=""(ts') + ﬂl(z(ti)l y(ti)n ta‘) =0
g2(z(t;), t;) = 0 1i=12,....M

M
:I:(t,.) = z(t,,_l) +h z: b,-z'(t,._l + c,-h) -

=1

M
¥(tn) = Y(ta-1) + hZ biy'(tn-1 + cih) —

i=1
where

z(t.-) = z(t,._l) +h f: a,-_,-a:'(t,._l + c,-h) - 5:(n)

S

T (3.5)

y(;) = Y(tn-1) + h f: 0y (1 + c;h) — 67V i=1,2,..., M.

i=1

Let Ggl(ti) = 392/82, Gu(ti) = aﬂ]_/ay, and Gu(t,-) = 8g1/8z, where
the partial derivatives are evaluated along the true solution at ¢;. Subtract-

ing (3.5) from (3.4), we obtain
E{' + Gu(t)Ef + G1a(4:)EY = nf

Ga(t)EFf = nf i=1,2,.

M
e =iy +h Y BET+ 8

=1
o J (n)

eb=ch_+h) bE!+ Spr1r
i=1

where

M
E'v = e:"_l + h Z a,-,-Eg' + 5‘”(")
j=1

M
Bf =i +hY ayEf +6",

L]
i=1

14
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(3.6)

(3.7)



and EF = X! - 2'(t;), BY = Y{ - ¥'(%), EY = Y; — y(t:), Bf = Xi — =(t3),
¢z = zn — 2(tn), and ¢! = yn — y(tn). The n; terms are the sum of residuals
from the Newton iteration and higher order terms in E and EY.

We can eliminate E'? in terms of E.?' by multiplying the first equation

in (3.68) by Gai(t;) and solving for EY,
EY = —-M;E¥ — M;Gu (%) Ef + Min;, (3.8)
where M; = (Gzl(t.')Gn(t.'))_lGn (t.-).

Let H; = Gia(t;)M;. Multiply the first equation in (3.6) by I — H;
and substitute (3.8) for Ef. Multiply the second equation in (3.8) by
Gu(t,-)(Gzl(t,-)G’n(t,-))"l. Equations (3.6) may now be written as

(I — H)EY + N:Ef = i}
H;E} = i} i=12...M

M
e =eX_+hY LEF + sln),

=1
M ' ]

¥ =el_,+hY BE! + R (3.9)
=1

where 7} = Gu(t.-)(Gn(t.‘)Gm(ti))_lﬂ.-"u af=- H;)n§ and
N; = (I - H.')Gu(f.').

Define ,
T3 r =z '
Bf =(I-H)Ef  E; =HE}
- zz(n)
5 = (1 H)EE™ B, = Ha"
& = (I - Hp)ed %, = Hpel.

Rewrite the first equation in (3.9),
(I - H)EY + N; ((I — H;)E{ + Hs'E.-') = fif.

Substituting the definition of Ef given in equation (3.7) and using the second
)
equation in (3.9), we have an expression for Ef ,

M M
BY + N; ((I —H)eE_ +hYaiEF +h)ai(Hi- H)E? + s:‘"’)
Jj=1 j=1

= 7 — Ni#?. (3.10)

15



<z
To find an expression for E; , from the second equation in (3.9) we have

M
Hiei _,+h Z a.','H,-E;' + H¢5:(") = ﬁ:’
i=1
Thus,

. M .- M g, =M,
Hiey 1+ hz a.-,-E,- +h Z a.-_,-(H.- - HJ-)EJ- +6; =19, (3.11)
i=1 i=1

. 23
Now we can rewrite (3.10) and (3.11) noting that E;-"' = E;' + E; and

- z2(n)
5™ = 55 4 5, to obtain

M
Ef +h Y ayNiEf + NI — H;) (e, +57™)

j=1

M ., -z

+h ) i Ni(H; — H;)(Ef + E;) = 77 — Nifi}
i=1

M ~z

h E a,-,-E,- + H; c:_l + 5:(n))

i=1
M - =z

+h Y a(H;— H;)(EF + E; ) =, (3.12)
j=1

for ¢« = 1,2,..., M. Using their Taylor series expansions about the true
solution at ¢,_j, express N; and H; as N; = N + O(h) and H; = H + O(h),
where N and H are evaluated along the true solution at time ¢,_.;. Then
rewrite (3.12) in matrix notation, to obtain:

) (F)=-(% o) (@Erna)+ ()
(h’T; Wy J\E ] " \o s, e§_1+5=(") + v (3.13)
where
EY = (BY EZ,... E3)T

23 =3 r
E =(E1lE2!"'lEM)
7 = (7f — Nudil, 75 — Naiid, ..., 7% — Nuil,)®

16



7" = (i, 7%, ii%)T
en_1 = (‘:—p Cn—lreees C:-l)r

85" = (55, 65, . 55T

The matrices in (3.13) are given by

T, = Ty + O(h?)
Ty = Ty + O(h)
S1 = 8, + O(h)
S¢= 84+ O(h),

where Ty = Inea+hA®N, Ty = 4014, §; = IN®(N(I — H)), §, = In® H,
T2 and T’s are O(1), and d is the dimension of z in (3.3). Here for clarity, we
have denoted the dimensions of the identity matrices by subscripts. How-
ever, since the matrix I4 occurs frequently, its subscript is omitted when its
dimension is obvious from the context.

Let T, denote the left-hand matrix in (3.13). T, is invertible because
the matrix 4 of coefficients of the method is invertible. The inverse of T}, is

given by
o (T +o(n) o(h
= (ot jaror)"

-, zz'
Now we can solve for E* and E in (3.13) to obtain

(B) - - (B850 g8 o) (28

7" + o(h)i¥ + O(h)7"
+ ('I‘;‘ﬁ"/h 4! O)'(’h)ﬁ' + c)J'('l) ")") (3.14)

Recall that E*' = E=' + E , S0 that from (3.14),

EY = —(1/m)(E 8 (ex s +8°M) + (/R)T MY + 7
+0(1)(ez_; + 6*™) + O(1)7¥ + O(h)F". (3.15)

We can use the expression for E*' above to solve for ¢Z. From the third
equation in (3.9), we have

ef =iy +hbTEY + 537,
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where bT = (blId, bolyg, ..., bMId) =T ® I
Substituting (3.15) into the above expression, we obtain
i = iy — (T ®L)(A @ L) (I ® H)(eG-y +65) + 657
+ (0T @ I) (A7 @ L)7Y
+ O(h6*(™) + O(heZ_,) + O(h7?) + O(RF"). (3.18)
Now by the strict stability condition, we have |1 — b7 A~ 1epr| < 1, where
em=(1,1,...,1)T. Let bTA'epr = 1 — p. Then from (3.16) we have
eZ = (I—(1—p)Hu1+ O(h))eZ_; + ((T471) ® L3)7?
+ O(h6*™) + O(h#*) + O(h#"). (3.17)
Multiplying (3.17) by H, and using the fact that Hy, is a projection, we
obtain
& o= oI +O0(R)E, — Har (6747) © )5 — 6347, )
+O(h6*™) + O(hb343)) + O(5%) + O(h7") (3.18)
where 7% = (7f, i3, .- -» ﬁf‘)r. Note that, by definition of the algebraic order

kg1, we have ((6T4~1) ® I )6%(") — 5;}1)1 = O(h*s1+1), Multiplying (3.17)
by (I—- Hy), and noting that (I - H;)7;Y =0 fors =1,2,..., M by definition
of 7;¥ in (3.9), we obtain

& = (I + O(h))&:_, + O(hs*™) + O(557,) + O(hit") + O(h#®). (3.19)

Note that the order kps,; of the last stage is always at least as large as
the differential order k4. Now suppose that ||7%|| < € and ||7¥]] < e3. The
magnitude of €; and 3 will be determined later. For linear problems, they
are just proportional to the size of the residuals at the termination of the
Newton iteration. Then rewriting (3.18) and (3.19), we have

&= oI +O(R)%_; + O(h*e1+1) + O(h*+2) 1 O(eg) + O(hey)

&= (I+0(h)&_, + O(h*+2) + O(h*+1) + O(hes) + O(hey),(3.20)

where by the strict stability condition, —1 < p < 1. .
Solving the recurrence relations (3.20) and noting that e2 = &, + & and

that k4,1 > ky, we obtain
liexll = O(h*3) + O(ea) + O(e1) + O((I — H)e5), (3.21)
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where kg = min(kg, k1 + 1).
Now we can bound the error in the y component. By the definition of
EY,
EY=el_, +h(A ® I)EY +5¥™,

where BV = (EY,EY,...,EY)T, BV = (EV,E,...,EL)T and §v(" =
(61"("), 6.‘?("), - ,6:‘("))1'. We can solve for E¥' to obtain

BY = (1/A)(4~ ® L)(E" — e, — %),
In the expression for e given in (3.9), substitute for E¥ to obtain
& = (174 en)el_; — ((B747") @ L2)6¥™) — 647))
+ br(ﬂ—l ® I)EY.

Note that ((3T4~1) ® I)6¥(™) — b'ﬂ'_:_)l = O(h*e1%1). Substitute for E¥ from
(3.8) and simplify to obtain

e = pei_1—bT(47 ® I)(In ® M + O(R)) (¥ + (In ® Gu1) E?)
+ O(n%) + O(h*e1+1), (3.22)

where M and G;; are evaluated along the true solution at ¢,_;. Now sub-
stitute for E= from (3.15) and simplify, to obtain

& = pel_y+ (/W) (T(A)) ® L) (In ® M)(Ine @ H)(e%_, + 6)
+0(e5_) + O(5™) + O(5*/K) + O(7*) + O(h*+1+1).

Noting that (In ® H)eZ_; = (&,_1,éu_1s---» 1), and solving the recur-
rence in (3.20) for ¢, , and simplifying, we have

e¥ = pe!_, + O(h*) + O(ez/h) + O(e1).
Solving the above recurrence for ef, we obtain
llekll = O(*) + O(ea/h) + O(e1)- (3-23)

Now for a linear problem, if we assume that the residuals from the New-
ton iteration satisfy ||nf|]| = O(h*¢) and ||9¥|| = O(h*'+!), then we have
shown the desired result for (3.3). For the nonlinear analysis, we will follow
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a strategy similar to that used in [14]. Recall that, by definition, 5 consists
of terms of the form
8%g, 8%y

azgl z oz z oW V¥
FE" E{, mE.' E;, a_yz'Ei E;.

while q}’ is composed of terms of the form

3%gs
922

Using the solution &, ; to (3.20) and equations (3.7), (3.8), (3.15), and
(3.21), one can show that | EY|| and [|Ef| satisfy

IEZ|l = O(k™) + O(ea/h) + O(er) + O((I — H)e5)
IEF]l = O(h*) + O(e2) + Oex) + O((1 — H)eg)-  (3.24)
If we assume that the residuals from the Newton iteration satisfy ||5*| =

O(h*e) and ||5¥|| = O(h**1), where # is the contribution to » from errors
in the Newton iteration, and that (I — H)e = O(h*@), then we have

In®ll < O(h*®) + (O(h*) + O(e1) + O(ea/h))?
< O(h*e) + O(h?1) + O(€) + O(ere2/h) + O(h* 1)
+ O(h*1~1e3) + O(e2/R?)
< Kl(h""’ +hFre + ef + e1e2/h + hRki-1le, 4+ eg/hz).
Similarly,

In®ll < O(h**) + (O(h*e) + O(e1) + O(e))?
< Kz(hkr"l + h""'q + Ef + €162 + th£2 + E;)

Now we let €1 and €2 be the solutions to

e = Ki(h* +h¥e + e+ eea/h+ B leg + 3/h%)
€& = Kg(h"""1 +h*e; + € +erea+ h*oeg + €3). (3.25)

We would like to conclude that ¢, = O(h*@), ea = O(h*'*1). Now if we
assume that k; > 2 and solve (3.25) for ¢; and €3 by functional iteration,
starting with initial values that satisfy e§°’ = O(h*r*1) and e{o) = O(h*e),
then it is easy to see that the spectral radius of the iteration matrix is less

than one, and we can use the contraction mapping theorem to conclude that

20



it converges to a solution which satisfies ¢; = O(h*¢), e; = O(h*+1). For
kr = 1, we cannot apply the theorem directly because the spectral radius is
larger than one, but if we scale the variables by & = ¢;/ vk and & = e2/h,
we can then apply the same strategy to reach the conclusion.

We have shown the result for (3.3), and it remains for us to demonstrate
that we can extend the conclusions to (3.1). This is easy to do, follow-
ing arguments similar to those used in [12]. For systems with index one
constraints mixed with index two constraints,

z' + fl(zl w2, t) =0
f2(5) Y, t) =0
fa(z, t) =0, (3.26)

where 3f3/dy and [(8fs/dz)(3f1/9z)] are both nonsingular, we can solve
the second equation in (3.26) for Y; at each stage ¢, so that the results just
shown for the order of £ and z are valid. By solving for the error in y, in
terms of the error in y,—; and the internal stage errors in z, it is easy to see
that for strictly stable implicit Runge-Kutta methods and consistent initial
conditions, the error in y, is no worse than O(h*?).

Similarly, we can see that the result extends to systems of the form

F(z',z,y,2,t) =0
fz(z, ¥ t) =0
fs(z,t) =0, (3.27)

where dF /dz' is nonsingular, by noting that the first equation in (3.27) can
be solved for z' to obtain a system of the form (3.3).

Finally, if in (3.1) 3g/dy is not identically zero but is singular and has
constant rank, then we can use a result of Dolezal [8] that there exists smooth
nonsingular transformations which bring the system to the form (3.27), and
which do not include any change of variables involving z. Thus the conclu-
sions are valid for (3.1).

We should note that this theorem gives only a lower bound on the order
of the method, and therefore does not exclude the possibility of a more ac-
curate solution. However, numerical experiments in the next section demon-
strate that some implicit Runge-Kutta methods do indeed suffer this order

reduction.
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4 Numerical Experiments

In this section we present the results of some numerical experiments on linear
and nonlinear index two semi-explicit systems. The experiments confirm
that the order reduction effects predicted in section 3 can occur in practice,
and also raise some interesting questions for future research.

The numerical experiments described in this section were restricted to
the four L-stable formulae discussed in section 2. The results given here were
obtained using a fixed stepsize code which implements a general M-stage
implicit Runge-Kutta method, given the method coefficients. The nonlinear
equations at each time step were solved by Newton iteration. The iteration
was terminated when the £ norm of the difference between two successive
iterates was less than a specified tolerance. An analytic iteration matrix was
provided to the code for all of the problems. All of the computations. were
performed in single precision on a CDC 176 computer.

The first test problem was a linear problem having four differential equa-
tions and one algebraic equation [2]:

zp = —efzitzatzity—et

zh = —z1+ 23— sin(t)zs + y — cos(t)

zy = sin(t)z; + s + sin(t)z4 — sin?(t) — e * sin(t)

2} = cos(t)zz + z3+ sin(t)zq — e~*(1 + sin(t)) — cos?(t) — ¢

0 = z;sin*(t) + z3cos®(t) + (=3 — €*)(sin(t) + 2 cos(t)) +
sin(t)(z4 — e~*)(sin(t) + cos(t) — 1) — sin®(¢) — cos®(t) (4.1)

The exact solution to this system is z; = sin(t), z2 = cos(t), zs = ¢,

z4 = e~*, and u(t) = e’sin(t). It is easy to verify that system (4.1) is index
two for all £. We solved this test problem for a sequence of fixed stepsizes on
the interval [0,1] using the four IRK methods. Consistent initial values were
specified at t = 0. After computing the global error at ¢ = 1, an observed
rate of convergence was determined by computing the ratio of global errors
when successively halving the stepsize. The observed order of the global
error was two in all variables when the test problem was solved by the two
stage SIRK method, agreeing with the order predicted by the theory. How-
ever, when the five stage DIRK was used, we found that the state variables
z were computed to an accuracy of O(h*) (i.e., the nonstiff ODE order k),
thereby exceeding the lower bound k% on the order predicted in section
8. The algebraic variable y was computed to only O(h) accuracy, which



agrees with the lower bound value of k}’,. The three stage SIRK method,
as expected, determined the algebraic variable to O(h?) accuracy and the
state variables to O(h3) accuracy. Note that the SIRK methods, as well
as the DIRK method, achieved the nonstiff ODE order of accuracy in the
state variables for this linear test problem. Finally, we found that the seven
stage extrapolation formula was order three in all variables, thereby exceed-
ing the order predicted by the lower bound. From these results, one might
be tempted to conclude that the convergence theorem could be strength-
ened to predict that IRK methods will compute the state variables z to
O(h*4) accuracy. However, this is not the case, as we can see from the
next two examples. The orders k7 and k¥ observed for this linear test prob-
lem are summarised with the predicted lower bounds k% and k% (recall that

% = min(kq, kr+1) and k% = kr) and the nonstiff ODE and internal orders
k4 and k; in Table 4.1.

Next we investigated the behavior of the IRK formulae on two nonlinear
problems. We chose to study the index three pendulum problem simply
because it has been studied so frequently by DAE researchers [11],{12],[13]
and can be posed as an index two problem [12]. The other nonlinear prob-
lem considered arises in the context of trajectory prescribed path control
problems [3]. The exact solution is not available for either problem, so we
first had to generate a ‘true’ solution which could be used for comparisons.
The corresponding index one systems were formulated and solved by the
code DASSL [16] with extremely tight error tolerances. In particular, the
‘true’ solution to the pendulum problem was obtained by setting the error
tolerances RTOL = ATOL = 1.E-12, while it was obtained for the trajectory
problem with RTOL = ATOL = 1.E-10.

Consider the pendulum problem as formulated in [12]. Note that this
formulation ensures that the original index three algebraic constraint is sat-
isfied even though the index of the system has been reduced to two.

5 = Tz—I1Y2

o = T4 T2

s = —nzn
3'4 = -z - 1
0 = (1—az7-2%)/2
0 = z1z3+ 2224 (4.2)

The algebraic constraints in this problem are nonlinear, yet for a constant
state the algebraic variables appear only linearly in the system. The pen-
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dulum problem was solved using the fixed stepsize IRK code on the interval
[0,1] for a sequence of stepsizes with each particular IRK formula. Consistent
initial conditions were specified, namely z; = 1, 22 =23 = z4 =y = y2 = 0.
The corrector iteration was terminated with a tolerance of 10~%, because the
Newton iteration failed to converge for tighter tolerances. Rates of conver-
gence for each method were estimated as in the linear problem by comparing
the global errors at ¢ = 1 for numerical solutions produced by successively
halving the stepsize. Unlike the results for the linear problem, it does not
appear that these formulae determine the state variables z to the ODE order
of accuracy. In particular, the five stage DIRK method behaved as expected
from the index two convergence theorem, finding the state variables z to no
more than O(h?) accuracy, and the algebraic variables y to O(hk) accuracy.
Meanwhile, the three stage SIRK method still appeared to be third order
in the state variables, while the algebraic variables were determined with
close to second order accuracy. The seven stage extrapolation method con-
tinued to perform admirably, yielding third order accuracy in all variables.
Finally, the two stage SIRK method remained second order accurate for all
variables. The numerical results for the pendulum problem are summarized
in Table 4.2.

The trajectory problem was posed in [2] as representative of the type of
trajectory prescribed path control problems of current interest. The con-
straints are quite nonlinear in both the state and algebraic variables, while
the two algebraic constraints are designed to simply prescribe two of the
state variables as functions of time. Initial values for the state variables are
known exactly, but initial values for the two algebraic variables (namely,
angle of attack a and bank angle §) were determined numerically from the
corresponding index one system. Specifically, the test problem used the
following initial values for the state variables: altitude H = 100,000 feet,
longitude ¢ = 0°, latitude A = 0°, relative velocity Vg = 12000 feet/second,
flight path angle 4y = —1°, and azimuth A = 45°. Angle of attack and bank
angle were initialized to a = 2.672870042° and 8 = —.0522095861634°, re-
spectively. The ‘small’ errors in the initial values for the algebraic variables
are annihilated in one step by the IRK methods chosen, as a result of their
L-stability property. The Newton iteration was terminated with a tolerance
of 10~1%, This problem was solved for fixed stepsizes on the interval 0,300,
and the global errors in the solution were computed at ¢ = 300 using the
‘true’ solution described earlier. The system is composed of the following
six equations of motion and two prescribed path control constraints:
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H' = Vgsin(y)

¢ = Vgcos(q)sin(A)/(r cos(}))
A' = Vgcos()cos(A)/r
Vg = —D/m—gsin(v)

— Q%r cos(2)(sin(2) cos(A) cos(v) — cos(A) sin(~))
v = Lecos(B)/(mVg) + cos(7)(Via/r — g)/Vr + 20z cos()) sin(A)
+ QFr cos(A)(sin(2) cos(A) sin(7) + cos(}) cos(7))/Vr
A' = Lsin(f)/(mVg cos(v)) + Vg cos(v) sin(A) tan(1)/r
— 20 g(cos(A) cos(A) tan(y) — sin(A))
+ 0% r cos()) sin()) sin(A)/ (Vg cos(7))
0 = v+1+9(t/300)?
0 = A-— 45—90(t/300)*

where

r
Gg
g

B
g

m
L
[ 4
CL
S
D

Cp

H+ Qe

20902900 feet, the earth radius

p/r?, the gravity force

.14076539F 4 17

72921159F — 4

2.800532728, the mass of the vehicle
.SpC’LSV}, the aerodynamic lift force
.002378. 2/ 23800- " the atmospheric density
.0lc, the aerodynamic lift coefficient

1, the vehicle cross-sectional reference area
.5pGpSV;‘£, the aerodynamic drag force
.04+ .1C2, the aerodynamic drag coefficient.

Since the corrector iteration was terminated with a fairly tight tolerance,
the values of the two state variables prescribed by the algebraic constraints
(namely, the flight path angle 4 and the azimuth A) were computed almost
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exactly for all the IRK methods considered. Rates of convergence for all
the other variables have been estimated as we described earlier for the other
test problems. The results were similar to those obtained for the pendulum
problem. The numerical solution produced by the DIRK method was close
to second order accurate in the state variables, and first order accurate in
the algebraic variables. The extrapolation formula yielded close to third
order accurate solutions in all variables, while the two stage SIRK method
was clearly second order for all variables. The three stage SIRK method
surprised us by producing a third order accurate solution for the algebraic
variables as well as for the state variables. We suspect this difference in
performance for this particular IRK method, when compared to its results
on the linear test problem and the pendulum problem, must be due to
the specific coupling of the state and algebraic variables in this nonlinear
system. The numerical results for the trajectory problem are summarized
in Table 4.3,

In conclusion, we see that the observed convergence rates of these IRK
methods applied to nonlinear semi-explicit index two systems can some-
times be as slow as the lower bounds derived in section 3 would indicate.
Some formulae, in particular the extrapolation method, achieve an order of
accuracy exceeding the predicted lower bounds, suggesting that a stronger
convergence theorem might be possible. On the other hand, there is a class
of IRK methods which have an internal order as high or nearly as high as
the ODE order. In particular, consider the class of M -stage singly-implicit
Runge-Kutta methods (SIRKs) whose coefficient matrix A is characterized
by its single-fold eigenvalue. Butcher [6] has shown how these IRK formu-
lae can be implemented very efficiently. There are two types of SIRKs, the
transformed type [6] and the collocation type [15]. It is easy to show that for
index two problems, transformed SIRKs will be at least order M — 1 (since
kr > M — 1), while collocation SIRKs will be order M (since ky = M).
Note that the second order, two-stage SIRK formula which has appeared
80 promising in our numerical experiments is in fact a collocation method.
Note also that if an L-stable SIRK formula is desired, one may select the
eigenvalue of the A matrix to satisfy Lps(A~!) = 0 where Ly is the Laque-
rre polynomial of degree M. Methods of this type have been derived for
orders up to and including six. In summary, we expect the SIRK methods
to perform very well on index two problems. However, the development
of an efficient IRK code for DAEs with index greater than one remains a
challenge because of the difficulties in developing appropriate error control
strategies for all the variables.
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Table 4.1: Predicted/Observed Orders for Linear Test Problem

L-stable Methods ko [ kr [ K% | k3 | kG | kY
1. Two-stage SIRK 2 12| 2 2| 2 2
2. Five-stage DIRK 4 |1 |2 | 4|1 1
3. Three-stageSIRK | 3 | 2 | 3 | 3| 2 | 2
4. Seven-stage Extrp. [ 3 | 1 | 2 | 3 | 1 | 3

Table 4.2: Predicted/Observed Orders on Pendulum Problem

[ Z-stable Methods kg [k [ k5 [ K2 TRE [ &Y
{| 1. Two-stage SIRK 2|22 |2[2]:2
[| 2. Five-stage DIRK 4|1]2]2|[1]1
| 3. Three-stage SIRK | 8 [ 2 | 8 [ 3 | 2 | 2
[| 4. Seven-stageExtrp. [ 8 | 1 | 2 | 3 [ 1 | 3

Table 4.3: Predicted/Observed Orders on Trajectory Problem
|| L-stable Methods kr [ kG | k7 kG | kY
[ 1. Two-stage SIRK 2 2|2 ]2
[l 2. Five-stage DIRK

3. Three-stage SIRK
4. Seven-stage Extrp.

CICIEN S Fo

1 1
2 3
1 3

=Y I'CY 'Y P

2 |2
3 |3
2 3
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